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Abstract. We show how in molecular predissociation a method combining ultrafast pump-probe techniques
with a measurement of the relative recoil velocity can map time-dependent neutral fragment distributions
into the ionic continuum. With an appropriate probe pulse exciting a resonant transition (such as (1+1)
Resonance Enhanced Multiphoton Ionisation, or excitation of ZEKE states), the temporal evolution of
fragment distributions can in principle be measured. Numerical simulations on NaI predissociation are
compared to a simple approximate mapping interpretation. The results are discussed in terms of the
interplay between temporal and energetic resolution with respect to current experimental limitations.

PACS. 33.80.Gj Diffuse spectra; predissociation, photodissociation – 03.75.Dg Atom and neutron
interferometry – 82.53.Eb Pump probe studies of photodissociation

1 Introduction

Femtosecond experiments have become a versatile tool
to explore the ultrafast dynamics of nuclear motion in
real time [1,2]. Particularly, the vibrational motion of
small molecules as well as the breaking of chemical bonds
can be observed in real time, both for gas phase sys-
tems as well as for systems interacting with an envi-
ronment [2–5]. Examples such as IBr predissociation [6,
7], or the appearance of the product of a chemical re-
action such as in H + CO2 → HO + CO [8,9] have at-
tracted wide interest. A wealth of information can be
obtained when the femtosecond pump-probe techniques
are combined with elaborate detection mechanisms like
electron spectroscopy [10–15] or imaging techniques [16].
This was recently nicely demonstrated by Davies et al.
who measured time-resolved photoelectron angular dis-
tributions [17] and by Assion et al. who could measure
the shape of moving vibrational wave packets by ultra-
fast time-resolved photoelectron spectroscopy [18,19]. An-
other way of mapping the dynamics of nuclear wave pack-
ets relies on the Coulomb explosion, as demonstrated by
Corkum and coworkers [20,21]. Depending on the pulse
parameters, one can not only detect molecular motion or
the breaking of bonds, but also the time-resolved build-
up of the fragments, since the fragmentation process takes
place during a finite time. A very interesting example of
the time-resolved build-up of fragments was observed ex-
perimentally by Zewail [22] in the predissociation of NaI,
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where the Na atoms are formed in a number of discrete
steps at specific times following the excitation.

Bearing in mind that the build-up of fragments is a
time-dependent process, one can also aim at investigating
the relative kinetic energy distribution of the fragments as
it evolves in time. In simple systems (such as diatomics),
the fragment distribution for long times reflects the ab-
sorption spectrum [23]. This can obviously not be the case
at shorter times because of the uncertainty principle. In
complex systems, time-dependent fragment kinetic energy
distributions can help discriminate between different frag-
mentation processes, each having their own time scale. To
illustrate some capabilities offered by this method, as well
as to analyse its constraints and limitations, we have cho-
sen to study the predissociation of NaI as a benchmark
system. We propose a realistic scheme to implement an
experiment which would allow to carry out measurements
of time-dependent kinetic energy distributions. These dis-
tributions have been theoretically studied by analyzing
parts of the nuclear wavefunction in the fragment chan-
nel at early times when the molecule has not completely
dissociated yet, i.e. when there are still parts of the wave-
function in the interaction region [24–26]. This theoreti-
cal analysis of fragment state distributions at early times
of the wave packet evolution shows that they are signifi-
cantly different from the ones obtained in the limit of large
times, i.e. when the molecule has completely decayed. In
this study, the asymptotic part of the wavefunction was
defined as the region where the potential energy surface is
a constant, since for those parts the momentum distribu-
tion does not change any more. However, this procedure
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was not supported by a realistic experimental scheme for
selecting the outer part of the wavefunction. Moreover, the
kinetic energy distributions of the neutral atoms produced
by the dissociation are not easy to measure.

In this paper we show that both problems can be over-
come by a time-delayed probe pulse that leads to ion-
isation of the Na atoms. It is shown that through this
procedure, we meet three requirements for a possible time-
dependent measurement of the fragment distribution:

1. the asymptotic (fragment) region is selected by the
pulse parameters

2. the dissociation produces Na+ ions which can be easily
detected

3. the process does not significantly alter the relative ki-
netic energy distribution of the neutral Na atoms that
appear in the asymptotic region.

The paper is organized as follows: after the introduc-
tion, we give a brief description of the model used for the
time-dependent study of the NaI predissociation and ioni-
sation using realistic pulse parameters for both the pump
and probe pulses. In the limit of short pulses, we derive an
explicit expression which gives a clear picture of the effect
of a two photon ionisation onto the nuclear dynamics of
the dissociating atoms. We then show numerical results
obtained by simulations of the pump- and probe-process
and the time-dependent fragment spectrum is calculated.
A thorough discussion of the possibility of performing the
proposed experiments is presented in the conclusions.

2 Model and theory

2.1 Femtosecond excitation and time-dependent
fragment distribution

In what follows we neglect the rotational motion, since it
takes place on a much longer timescale than the time con-
sidered below. The effect of different initial rotational lev-
els onto the final fragment distribution is discussed in Sec-
tion 4. With the pump- and probe-wavelengths proposed,
there are three electronic states of the NaI molecule plus
the ground state of the (NaI)+ ion involved. These states
are the electronic ionic ground state correlating with the
ion pair state, a covalent state that is excited by the pump
pulse and which correlates for large internuclear distances
with ground state atoms, a Rydberg state that correlates
with Na(4p) + I and the ground state of the ion core. The
Hamiltonians for the nuclear motion in these electronic
states are called Hi with the corresponding potential en-
ergy surfaces Vi, i = G, C, R, I. These potential energy
curves are taken from previous pump-probe studies that
gave very good agreement with experimental results [24].
The probe pulse of 330 nm leads to a resonant two-photon
transition via an electronic Rydberg state that is taken
from [27].

The molecule is assumed to be initially in its electronic
and vibrational ground state from where it is excited by a
first ultrashort 80 fs (FWHM) Gaussian laser pulse, with
a central wavelength of 310 nm. This laser pulse creates
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Fig. 1. Upper panel: Potential energy curves of NaI involved
in the process. The arrows indicate the excitations by the
pump and probe laser. Lower panel: cut-off function that de-
fines the asymptotic region for a pump-pulse of 80 fs FWHM
(see Eq. (10)).

a localized nuclear vibrational wave packet, on the cova-
lent electronic surface VC. As depicted in Figure 1, this
curve crosses the ionic ground state surface VG at an in-
ternuclear distance of about 13 a.u., and due to a strong
coupling, about 90% of the wave packet crosses to the
ionic ground-state curve. The energy of excitation, how-
ever, is below the dissociation limit of this curve, so that
the wave packet performs oscillations in the adiabatic po-
tential well while changing between the covalent and ionic
surfaces. Each time the wave packet reaches the crossing
while moving outwards, parts of it will stay on the dia-
batic covalent curve and dissociate. When the wave packet
moves inwards, parts of it will stay on the diabatic ion-pair
curve, followed by reflection at the inner turning point and
dissociation on the adiabatic ground state curve. This sce-
nario is the time dependent picture of the predissociation
process, that has been the subject of the first femtosecond
experiments by Zewail and was also theoretically studied
in great detail by many authors [22,24,28–30].

In view of a simulation of the pump-probe experiment,
the theoretical study to be presented starts with the cal-
culation of the nuclear wave packet ψC(r) in the cova-
lent electronic state that is being created by the first,
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ultrashort laser pulse (atomic units are used throughout):

ψC(r, t) = i
∫ t

0

dt′e−iHC(t−t′)µCGE1(t′)

× e−iω0t
′
ψG(r, t = 0). (1)

Within the rotating wave approximation,

E1(t) =
E0
2

e−( t−2τ
τ )2

e−iω1(t−2τ) (2)

is the resonant term of the electric field describing the
ultrashort laser pulse of central frequency ω1. Its ampli-
tude at t = 0 is sufficiently small that the pulse can be
considered to start at t = 0. Furthermore, µCG is the
transition dipole moment between the ground and the co-
valent state, which we assume to be independent of the
internuclear distance (Condon approximation). The ini-
tial wavefunction ψG(r, t = 0) describes the molecule in
its electronic and vibrational ground state of energy ω0.
Since we employ an ultrashort laser pulse with a duration
of 80 fs, the excitation process is over before the mov-
ing wave packet has reached the crossing region. For this
reason we can treat the excitation to the covalent surface
independently from the subsequent nuclear motion which
takes place on the two coupled electronic surfaces. The
wave-packet propagation on the coupled surfaces is done
with the FFT-split-operator technique [31], that has been
adapted to treat curve-crossing problems [32]. In this way,
we can calculate how the wave packet evolves on the cou-
pled electronic surfaces.

Following Engel et al. [25], we can define an asymptotic
wavefunction as the covalent component for internuclear
distances greater than a certain value, where the potential
energy surface can be considered to be constant. Projec-
tion of this asymptotic wavefunction onto free waves |k〉
with wavevector k yields the relative velocity distributions
of the fragments

P as(k, t) ∝ |〈k|f(r)|ψC(t)〉|2. (3)

Here f(r) is a cut-off function that defines the asymptotic
parts of the wavefunction, i.e. is 1 in the asymptotic part
and 0 in the interaction region [23,25,26].

Although this kinetic energy distribution contains
valuable information on the wave packet properties, it is
not directly measurable. In what follows we will show that
with well-defined pulse parameters the above defined time-
dependent fragment distribution is experimentally acces-
sible by a two-photon ionisation of the molecule with sub-
sequent measurement of the recoiling ionic fragments.

2.2 (1+1) Resonance enhanced probe ionisation

In this section we will study the two-photon probe ioni-
sation that will allow for an experimental observation of
the time-dependent fragment distributions. The connec-
tion between the wave packet created in the ionic contin-
uum and the initial moving wave packet on the covalent

curve is examined in detail. We suppose that after a de-
lay time T , the 80 fs, 330 nm probe pulse induces a two-
photon transition via an electronic Rydberg state VR to
the ionisation continuum [27]. As in previous pump-probe
ionisation simulations [30], the ionic continuum state vec-
tor is expressed in terms of electronic eigenstates [33] |E〉
that describe the core electrons and one free electron with
energy E. Within second order perturbation theory, the
two-photon ionisation step can be written as [34,35]:

ψE(r, t) = −
∫ t

T

dt′
∫ t′

T

dt′′e−i(HI+E)(t−t′)µIRE2(t′ − T )

× e−iHR(t′−t′′)µRCE2(t′′ − T )e−iHC(t′′−T )ψC(r, T ). (4)

Thus ψE(r, t) is the nuclear wavefunction of the (NaI)+ ion
with a scattered free electron having energy E. Here µRC

and µIR are the bound-bound and bound-free transition
dipole moments, which we take to be constant with respect
to the internuclear distance (Condon-approximation) and
independent of energy over the small energy range that
is accessed by the ionisation process. The electric field
E2 is defined as E1 in equation (2) with ω1 replaced by
the probe frequency ω2. The probe wavelength is chosen
to be resonant with the asymptotic VC − VR transition,
because we are interested in promoting the part of the
wavefunction that dissociates on the covalent surface into
the ionisation continuum. In equation (4), we have only
considered the contribution of the covalent part of the
wavefunction to the ionisation process, i.e. neglected ion-
isation that stems from ψG. At this wavelength, a tran-
sition from the ionic curve is strongly off-resonant except
for a very narrow transient Franck-Condon region around
the crossing point, which yields a negligible contribution
to the ionisation signal.

The relative fragment momentum distribution of
(NaI)+ after the probe pulse has passed the sample is
then given by [23,25,26]

P I(k, T ) ∝ lim
t→∞

∫
dE|〈k|ψE〉|2. (5)

The results to be shown below are calculated in this
manner using a discretisation of the electron energy E.
First, we have calculated the one-photon pump and two-
photon probe excitations with 80 fs (FWHM) Gaussian
laser pulses of 310 and 330 nm respectively. After the
probe pulse has died out, the wave packet is fully propa-
gated into the asymptotic region and then Fourier trans-
formed. This calculation is repeated for 10 different values
of the kinetic energy E of the electron covering the spec-
tral width of the laser pulse, followed by a summation of
the results.

2.3 Mapping of the fragment distribution
into the ionic continuum

Even though the results to be presented below are sim-
ulations taking the finite pulse length fully into account,
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we want to develop equation (4) further to get more insight
into the mechanism of the short-pulse ionisation. To this
end, we employ the so-called short pulse approximation
[36], which forms the basis of the mapping of vibrational
wave packets into the electron spectrum [30,35].

The short-pulse approximation consists of using the
Baker-Hausdorff theorem [37] and keeping only the first
term in the exponent:

eiHIte−iHRt ≈ eiDIR(r)t (6)

eiHRte−iHCt ≈ eiDRC(r)t. (7)

The kinetic energy operators cancel, and one gets a phase
factor in coordinate space that is given by the differ-
ence potentials DIR(r) = VI(r) − VR(r) and DRC(r) =
VR(r)−VC(r). A detailed discussion of the validity of this
approximation is given elsewhere [36]. Physically, this ap-
proximation is valid if the pulses are so short that one can
neglect the nuclear motion during their duration.

Using this approximation, which has widely been used
in the context of short-pulse excitation by many authors
[38,39], the integrations in equation (4) can be carried out
to give:

ψE(r, t) ∝ e−i(HI+E)(t−T−2τ)e−
τ2
4 (DRC(r)−ω2)2

× G(DIR +E − ω2)ψC(r, T + 2τ) (8)

where unimportant constants have been dropped. Taking
equation (2) into account, one sees that ψC(r, T +2τ) cor-
responds to the covalent nuclear wavefunction at the cen-
tre of the probe pulse. In the above expression, G(DIR +
E − ω2) is the Fourier transform

G(Ω) =
∫ ∞
−∞

dt′eiΩt′e−
�
t′
τ

�2

×
(

1 + erf
(
t′

τ
− i

τ

2
(DRC(r) − ω2)

))
(9)

of a well localized function in time. Due to the term
e−

τ2
4 (DRC(r)−ω2)2

the main contributions in equation (8)
stem from the regions in coordinate space where DRC(r)−
ω2 = 0 holds. If we thus neglect the imaginary part of the
argument of the error function, one sees that the remain-
ing function can be viewed as the pulse shape for an effec-
tive two-photon transition that could be very accurately
expressed as a single Gaussian.

Using the fact that the Rydberg state can be consid-
ered to be almost parallel to the ion ground state [27] we
see that the ionic fragment distribution can be approxi-
mated by

P I(k, T ) ∼ |〈k|e− τ
2
4 (DRC(r)−ω2)2 |ψC〉|2. (10)

which corresponds to equation (3) with the cut-off func-
tion f(r) = e−

τ2
4 (DRC(r)−ω2)2

. Hence within these approxi-
mations, P I(k, T ) and P as should coincide, as shall be ver-
ified numerically in the example given below. This cut-off
function is depicted in the lower panel of Figure 1 for the

above-mentioned pulse parameters and one can see that
the resonant transition via the state VR just filters the
asymptotic parts of the wavefunction. Apart from a very
small region at around 4.5 a.u., which cannot be reached
by the wave packet, it efficiently suppresses the parts in
the interaction region and becomes a constant for internu-
clear distances greater than approximatively 30 a.u. Hence
within the approximations of a short probe pulse and an
almost parallel curve of the Rydberg state with respect
to the ion state, the ionisation step does not significantly
alter the fragment distribution of the parts of the wave-
function ψC(r) that are located at internuclear distances
greater than about 30 a.u. Thus the time evolution of
the fragment spectra can be observed in a pump-probe
ionisation set-up with the detection of the ionic fragment
distribution.

3 Results

3.1 Time-dependent fragment distributions

To illustrate the theoretical considerations above, we want
to consider the NaI molecule that has been the subject of
numerous theoretical and experimental studies. The po-
tential energy curves, taken from [24,27], have previously
been used successfully to simulate many experiments by
Zewail and others [22,27–29]. They are shown in the upper
panel of Figure 1 together with schematic arrows indicat-
ing the excitation processes of the pump- and probe-lasers.

The lower panel shows the filter function f(r) =
e−

τ2
4 (DRC(r)−ω2)2

that defines the asymptotic part via the
resonant probe transition.

Figure 2 shows the total probability of dissociation (us-
ing this filter function)

P as
total(t) =

∫
dk P as(k, t) (11)

as a function of time and one finds the well known
step-function that is a clear fingerprint of the individual
parts of the wave packet that reach the asymptotic re-
gion [22,24]. The steps occur at times T1, T2, ... separated
by the vibrational motion of the parts of the wavefunction
trapped (temporarily) in the interaction region.

Around T1 = 200 fs the first part of the wavefunction
reaches the asymptotic region as a result of the splitting at
its first passage through the crossing point, and at 700 fs
after the pump pulse excitation, only this first part of
the wave packet is located in the asymptotic region. The
step around T2 = 1400 fs corresponds to a second wave
packet that is located around the internuclear distance
that roughly defines the beginning of the asymptotic part
ra = 20 a.u.; and at 1900 fs there are exactly two parts of
the wavefunction in this region. Hence the regular steps
are an indication of these well separated wave packets that
dissociate. This “dissociation in parts” gives rise to drasti-
cally different transient fragmentation spectra, as has been
stressed already in previous theoretical studies [26]. In Fig-
ure 3, we show the asymptotic fragment spectra P as(k, t)
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(Eq. (3)) for three different times, 700, 1 900 and 3 200 fs
after excitation, together with the fragment distributions
P I(k, T ) that can in principle be measured for t → ∞ if

a second pulse (probe) interacts with the sample at delay
times T = 700, 1 900 and 3 200 fs respectively.

We find that for each of the delay times P as(k, t) and
P I(k, T ) superimpose almost perfectly. Since the Rydberg
state is taken to be parallel to the ionic ground state po-
tential [27], the VR−VI transition does not alter the frag-
ment distribution, as was detailed in context with equa-
tion (10). The slight differences stem from the fact that
even during 80 fs the nuclei can move a very small dis-
tance, which is not accounted for using the short-pulse
approximation.

The qualitatively different shapes of the spectrum for
different times have already been discussed in [26]. Briefly,
the spectrum calculated at 700 fs corresponds to the case
where only one well localized wave packet is in the asymp-
totic region and promoted into the ionic continuum. From
Figure 2, one sees clearly that 700 fs corresponds to the
first plateau in P as

total(t), as indicated by an arrow. Fourier
transform of this single Gaussian wave packet yields the
shown fragment distribution. This is completely equiva-
lent to a direct dissociation process. An alternative view
is that, at this early time, the asymptotic part of the wave
packet has not oscillated in the well so that it does not
bear the information of the quasibound motion of the rest
of the wave packet. This situation is different at a de-
lay of 1 900 fs (the second plateau in Fig. 2). Here two
well-separated wave packets are in the asymptotic region.
Since they are mutually coherent, the spectrum now shows
a strong interference structure, which gets even more pro-
nounced when three wave packets interfere, as it is the
case at 3 200 fs, shown in the lower panel of Figure 3.

As the molecule predissociates, more and more wave
packets reach the asymptotic region and contribute coher-
ently to the fragment spectrum, until in the limit t→∞
the molecule is completely dissociated and the fragment
spectrum reflects the absorption spectrum, showing all the
vibrational resonances [23]. However, since the strongly
anharmonic adiabatic potential well leads to a fast spread-
ing of the quasi-bound wave packet, only the first few
crossings lead to dissociation into well separated wave
packets. Later, the flux into the asymptotic region is more
continuous, and the steps in Figure 2 get less and less pro-
nounced.

To get more insight into the relationship between the
time-dependent fragment distributions, the interference
structure and vibrational levels of the adiabatic poten-
tial well that supports the quasi-bound motion, we want
to consider the situation at times 700 and 1 900 fs in fur-
ther detail. Figure 4 shows the actual wavefunction in the
asymptotic part, i.e. f(r)ψC(r) at two different times to-
gether with the fragment spectrum P I(k, T ) that can be
measured if at these times the probe pulse passes the sam-
ple. In the upper panel, one sees that at 700 fs after the
excitation, one single wave packet, resulting from the first
encounter of the wave packet with the curve crossing is lo-
cated at about 38 a.u. At this distance, f(r) is practically
1 so that the filter process just selects this dissociating
part without modifying it. The momentum distribution is
a Gaussian centered around 49.1 a.u., which is determined
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by the excitation energy. In the lower panel, the same ob-
servable is shown at 1 900 fs. At that time, the first wave
packet has moved to approximately 107 a.u. without sig-
nificant dispersion, and a second one is located at 38 a.u.
This second part of the wave packet has a larger ampli-
tude, because it consists of two contributions that per-
formed one additional oscillation in the diabatic and adia-
batic potential well respectively, both with approximately
the same period of about 1.2 ps. This explains also the dif-
ference between the first and second step heights observed
in Figure 2. Hence this second part of the wavefunction is
separated from the first one by a distance of about 69 a.u.,
which corresponds to a temporal delay of this oscillation
period. A Fourier transform of these two wave packets is
a Gaussian centered around the same mean momentum
as above but with an interference term that corresponds
to the vibrational spacing of the quasibound states. A de-
tailed semiclassical analysis of these resonance states and
their lifetimes are given in [40].

From Figure 4 we see that due to these interferences
the probability of finding fragments with relative momen-
tum between k and k+∆k may show a completely different
behaviour for values of the momentum that correspond to
a vibrational resonance or for values that lie in between
two resonances. Figure 5 presents

P I
av(k, T ) =

∫ k+∆k

k−∆k
P I(k′, T )dk′ (12)

for two neighbouring values of the relative momentum as
a function of the pump-probe delay. These values of the
relative momentum correspond to maxima kc = 49.15 a.u.
and minima kd = 49.18 a.u. in the fragment spectra for
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Fig. 5. Temporal behaviour of momentum resolved ion frag-
ment distribution P I

av(k, T ) (Eq. (12)) for two values of momen-
tum corresponding to constructive (kc) and destructive (kd)
interference.

large times. Clearly, the amount of fragments increases
first for both values of the mean momentum kc,d consid-
ered. The arrival of the following wave packet results in
successive increasing steps for kc. These steps are higher
than in the case of the integrated signal (Fig. 2) because of
the progressive concentration of the probability into those
values of relative momentum that correspond to vibra-
tional resonances. The destructive interference in the case
of kd leads to a decrease of the fragment probabilities cal-
culated at kd. This result is an interesting example of an
observable in the fragment channel that does not increase
even though more and more parts of the wave packet reach
the asymptotic region. This is due to the fact that the ac-
cumulation of the fragment wavefunctions is a coherent
process and thus subject to interferences that might be
destructive.

3.2 Dependence of fragment resolution on delay time

In relation with the study of time-dependent fragment dis-
tributions of the dissociation of CH3ONO, the resolution
of the time-dependent spectrum can be interpreted using
the uncertainty principle [25]. Briefly, if at a short time
after the excitation the spectrum is calculated, the un-
certainty in the molecular bond length is small, and as a
consequence of the uncertainty principle, the uncertainty
in the momentum distribution is large. At longer times,
the predissociating wave packet spreads over a large inter-
nuclear distance, and the uncertainty in the momentum
distribution becomes small.

Here, we want to take a slightly different approach
based on the measurable fragment distributions depicted
in Figures 3 and 4. The energy resolution ∆E of the frag-
mentation process can be defined to be the width of their
finest structures. This energy resolution is constant on
each of the steps shown in Figure 2 but subject to a sudden
increase from one step to another (see Fig. 3). Hence the
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uncertainty product of ∆E T will show a sawtooth-type
behaviour as a function of delay time.

It may be surprising that the probe step produces an
ionic wave packet with a kinetic energy distribution that
– after final dissociation – differs drastically from the one
obtained on the covalent curve for t → ∞. Effectively,
since the covalent, the Rydberg and the ion ground state
potential surfaces are parallel in the asymptotic region, a
simple application of the Franck-Condon principle would
lead to the conclusion that both wave packets have the
same position and momentum distributions. This is effec-
tively true, but only for the asymptotic part. The main
effect of the probe step is thus to isolate the asymptotic
parts from the inner ones of the covalent component of the
wavefunction, and therefore providing a scheme for mea-
suring this asymptotic part previously studied [24,25]. By
reducing the number of individual wave packets that ap-
pear for t→∞ the interference producing the vibrational
resonance structure are reduced or even cancelled.

The role of the laser spectral widths in this type of
experiment deserves special mention. The spectral width
of the pump laser, together with the absorption spectrum,
defines the limits of the kinetic energy distribution. On the
other hand, the spectral width of the probe pulse does not
affect the kinetic energy resolution. Thanks to the Franck-
Condon principle, the kinetic energy of the nuclei is not
affected by the probe step (in the REMPI implementation
of the technique), since all the excess photon energy is car-
ried off by the photoelectron. Similarly if the probe step
leads to the production of a ZEKE electron, the kinetic
energy of the nuclei is unaffected by the electronic transi-
tion. The kinetic energy distributions which are measured
can however be adversely affected by situations where the
potential energy curves on which the molecule dissociates
before and after the probe step (i.e. curves C and I in the
current work) are not parallel, in which case the asymp-
totic velocities in the final experimental state (I) may be
different from what they would have been following the
dissociation (on curve C).

4 Conclusion

In this paper we have studied the temporal evolution of
fragments that appear in a predissociation process. We
have shown, using the NaI molecule as an example, that
with suitably chosen laser parameters one can map the
fragment velocity distribution into the ionisation contin-
uum via a resonant ionisation step like a (1+1) REMPI or
ZEKE scheme. Experimentally, the velocity of Na atoms
(or Na+ ions) can then be detected using time-of-flight
or ion imaging techniques. It has been shown that the
fragment velocity distribution closely resembles the veloc-
ity distribution that exists at different times in the neutral
dissociation channel. Thus, in principle, the temporal evo-
lution of the fragment velocity distribution can be mea-
sured in real time as the dissociation is taking place. A
simple, intuitive picture has been derived, assuming laser
pulses which are short compared to the vibrational period.

In this limit, the relative fragment momentum distribu-
tions are determined by the parts of the wave packet that
move on the covalent dissociative state, multiplied by a
filter function that selects only the asymptotic part of the
wavefunction. In this way, the fragments can be analyzed
while the molecule is still in the process of decaying. Thus
the temporal change of the wave packet can be experimen-
tally verified.

In our paper, we have analyzed the predissociation of
NaI, a system which has been extensively studied both
theoretically and experimentally. The predissociation of
this molecule meets several requirements which we have
defined: the predissociation process is relatively slow, tak-
ing several tens of picoseconds, and thus making it well
suited to follow the build-up of the fragment distribution.
The electronic structure of NaI is such that the one-photon
pump and two-photon probe wavelengths can readily be
obtained from available femtosecond laser sources. In fact,
only recently an experiment of this type was performed
[29], however with detection of the total ion signal as
a function of pump-probe delay. The main experimen-
tal challenge lies in combining this measurement with a
measurement of the fragment kinetic energy distribution,
which requires a 5 meV kinetic energy resolution (the av-
erage vibrational spacing in the situation considered here)
at a total kinetic energy of about 1 eV.

Moreover, the initial rotational distribution will add a
broadening to the presented structures that is given by the
rotational temperature, which requires the experiments to
be performed on a cold sample or in a molecular beam.

There are a number of ways in which a measurement
of the fragment kinetic energy distributions can be im-
plemented in a pump-probe experiment. Of these, we dis-
cuss the two techniques which we consider to be the most
promising at present, namely velocity map ion imaging
[41] and Rydberg atom time-of-flight spectroscopy [42].
In velocity map ion imaging [41], the end-result of the
laser experiment would be the production of Na+ ions by
(1+1) REMPI. These Na+ ions are accelerated towards a
microchannel plate (MCP) detector followed by a phos-
phor screen, where the experiment consists of recording
the positions of impact of the ions on the MCP. Through
an inversion procedure the 3D velocity distribution of the
Na+ ions can be reconstructed from the 2D image thus ob-
tained. In the implementation of this technique in our lab-
oratory a resolution of 14 meV for monoenergetic 0.62 eV
photoelectrons (2.2%) was obtained in the photoionisa-
tion of metastable Ar atoms, limited by the CCD cam-
era which was used for the data recording. We estimate
that, within the next few years, improvements in this tech-
nique down to the 0.2–0.5% level can be achieved, satis-
fying the requirements for the experiment proposed. The
highest resolution in the measurement of photofragment
kinetic energy distributions has so far been obtained in
the Rydberg atom time-of-flight technique introduced by
Welge et al. [42]. In this technique the fragment to be de-
tected is excited to a long-lived Rydberg state and the
time-of-flight towards a detector (where field ionisation
and subsequent detection take place) is recorded. In the
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experiments of Welge et al. [42] a kinetic energy resolution
of ∆E/E = 0.3–0.4% has been achieved, whereas 0.1% is
possible. Extension of this technique to the detection of Na
atoms seems feasible. Excitation of high Rydberg states in
femtosecond pump-probe experiments has already been
demonstrated in vibrational wave packet experiments on
I2 [12]. A disadvantage of the technique is that (unlike in
the afore-mentioned velocity map ion imaging experiment)
only a small fraction of the Na atoms could be detected
(i.e. only those atoms which have a recoil vector in the
direction of the detector).

The NaI predissociation discussed in this paper is
an ideal system for the discussion of the proposed tech-
nique to measure time- and kinetic energy resolved
photofragment distributions. However, the approach also
has considerable promise for application in other, more
complicated, situations. Of these, we briefly discuss the
predissociation of IBr and the photodissociation of poly-
atomic molecules. The IBr molecule is a benchmark sys-
tem for studies of molecular predissociation as a result
of intermediate strength coupling. It is a system where
neither a diabatic nor an adiabatic representation pro-
vide a satisfactory description of the spectroscopy and
dynamics. In vibrational wave packet experiments the
dissociation dynamics is complicated by the existence of
strongly oscillatory lifetimes of the vibrational states in-
volved [6,7]. A measurement of the time- and energy-
resolved photofragment distributions is anticipated to re-
veal rich time-dependent structure in this system, and
has resolution requirements which are comparable to NaI.
Other systems, where measurements of time- and energy-
resolved photofragment distributions have considerable
promise, are polyatomic molecules. Here the information
that can be obtained is qualitatively different from the sit-
uation in diatomic molecules. In diatomic molecules there
is a strong relationship between the behaviour which is
observed in the time-domain and in the energy-domain,
as discussed in Section 2. In polyatomic molecules the sit-
uation is rather different, owing to the high number of de-
grees of freedom that exist in the problem. In general the
product of the uncertainty in the momentum in the reac-
tion coordinate and position along the reaction coordinate
can be significantly larger than ~. In other words, a mea-
surement of the time-dependence of a dissociation process
often has very little to say about the fragment kinetic en-
ergy distributions that are produced in the dissociation. It
then follows that in a measurement where information is
simultaneously obtained in the time- and energy domain,
these two pieces of information may strengthen each other
and may reveal the existence of several competing mech-
anisms in the dissociation (each with their own temporal
behaviour and photofragment kinetic energy distribution),
as well as address the question whether a dissociation pro-
ceeds statistically or not.
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